skip to main content


Search for: All records

Editors contains: "Vaughan, J. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P.S. ; Vaughan, J. W. (Ed.)
    We provide theoretical guarantees for label consistency in generalized k-means problems, with an emphasis on the overfitted case where the number of clusters used by the algorithm is more than the ground truth. We provide conditions under which the estimated labels are close to a refinement of the true cluster labels. We consider both exact and approximate recovery of the labels. Our results hold for any constant-factor approximation to the k-means problem. The results are also model-free and only based on bounds on the maximum or average distance of the data points to the true cluster centers. These centers themselves are loosely defined and can be taken to be any set of points for which the aforementioned distances can be controlled. We show the usefulness of the results with applications to some manifold clustering problems. 
    more » « less
  2. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y ; Liang, P. S. ; Vaughan, J. W. (Ed.)
    Attention maps are popular tools for explaining the decisions of convolutional neural networks (CNNs) for image classification. Typically, for each image of interest, a single attention map is produced, which assigns weights to pixels based on their importance to the classification. We argue that a single attention map provides an incomplete understanding since there are often many other maps that explain a classification equally well. In this paper, we propose to utilize a beam search algorithm to systematically search for multiple explanations for each image. Results show that there are indeed multiple relatively localized explanations for many images. However, naively showing multiple explanations to users can be overwhelming and does not reveal their common and distinct structures. We introduce structured attention graphs (SAGs), which compactly represent sets of attention maps for an image by visualizing how different combinations of image regions impact the confidence of a classifier. An approach to computing a compact and representative SAG for visualization is proposed via diverse sampling. We conduct a user study comparing the use of SAGs to traditional attention maps for answering comparative counterfactual questions about image classifications. Our results show that the users are significantly more accurate when presented with SAGs compared to standard attention map baselines. 
    more » « less